Menu Home

Don’t Feel Guilty About Selecting Variables

We have an exciting new article to share: Don’t Feel Guilty About Selecting Variables. If you are at all interested in the probabilistic justification of important data science techniques, such as variable selection or pruning, this should be an informative and fun read. “Data Science” is often criticized with the […]

A Theory of Nested Cross Simulation

[Reader’s Note. Some of our articles are applied and some of our articles are more theoretical. The following article is more theoretical, and requires fairly formal notation to even work through. However, it should be of interest as it touches on some of the fine points of cross-validation that are […]

Variable pruning is NP hard

I am working on some practical articles on variable selection, especially in the context of step-wise linear regression and logistic regression. One thing I noticed while preparing some examples is that summaries such as model quality (especially out of sample quality) and variable significances are not quite as simple as […]

vtreat version 0.5.26 released on CRAN

Win-Vector LLC, Nina Zumel and I are pleased to announce that ‘vtreat’ version 0.5.26 has been released on CRAN. ‘vtreat’ is a data.frame processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. (from the package documentation) ‘vtreat’ is an R package that incorporates a number of […]

A demonstration of vtreat data preparation

This article is a demonstration the use of the R vtreat variable preparation package followed by caret controlled training. In previous writings we have gone to great lengths to document, explain and motivate vtreat. That necessarily gets long and unnecessarily feels complicated. In this example we are going to show […]

Improved vtreat documentation

Nina Zumel has donated some time to greatly improve the vtreat R package documentation (now available as pre-rendered HTML here). vtreat is an R data.frame processor/conditioner package that helps prepare real-world data for predictive modeling in a statistically sound manner.