Authors: John Mount (more articles) and Nina Zumel (more articles). Our four part article series collected into one piece. Part 1: The problem Part 2: In-training set measures Part 3: Out of sample procedures Part 4: Cross-validation techniques “Essentially, all models are wrong, but some are useful.” George Box Here’s […]
Estimated reading time: 35 minutes
Authors: John Mount (more articles) and Nina Zumel (more articles). In this article we conclude our four part series on basic model testing. When fitting and selecting models in a data science project, how do you know that your final model is good? And how sure are you that it’s […]
Estimated reading time: 7 minutes
Authors: John Mount (more articles) and Nina Zumel (more articles). When fitting and selecting models in a data science project, how do you know that your final model is good? And how sure are you that it’s better than the models that you rejected? In this Part 3 of our […]
Estimated reading time: 7 minutes
Authors: John Mount (more articles) and Nina Zumel (more articles). When fitting and selecting models in a data science project, how do you know that your final model is good? And how sure are you that it’s better than the models that you rejected? In this Part 2 of our […]
Estimated reading time: 9 minutes
Authors: John Mount (more articles) and Nina Zumel (more articles). “Essentially, all models are wrong, but some are useful.” George Box Here’s a caricature of a data science project: your company or client needs information (usually to make a decision). Your job is to build a model to predict that […]
Estimated reading time: 14 minutes
Image by Liz Sullivan, Creative Commons. Source: Wikimedia An all too common approach to modeling in data science is to throw all possible variables at a modeling procedure and “let the algorithm sort it out.” This is tempting when you are not sure what are the true causes or predictors […]
Estimated reading time: 26 minutes
Our last article on A/B testing described the scope of the realistic circumstances of A/B testing in practice and gave links to different standard solutions. In this article we will be take an idealized specific situation allowing us to show a particularly beautiful solution to one very special type of […]
Estimated reading time: 26 minutes
Why does planning something as simple as an A/B test always end up feeling so complicated? An A/B test is a very simple controlled experiment where one group is subject to a new treatment (often group “B”) and the other group (often group “A”) is considered a control group. The […]
Estimated reading time: 16 minutes