Menu Home

New Introduction to rquery

Introduction rquery is a data wrangling system designed to express complex data manipulation as a series of simple data transforms. This is in the spirit of R’s base::transform(), or dplyr’s dplyr::mutate() and uses a pipe in the style popularized in R with magrittr. The operators themselves follow the selections in […]

Introducing data_algebra

This article introduces the data_algebra project: a data processing tool family available in R and Python. These tools are designed to transform data either in-memory or on remote databases. In particular we will discuss the Python implementation (also called data_algebra) and its relation to the mature R implementations (rquery and […]

Data Manipulation Corner Cases

Let’s try some "ugly corner cases" for data manipulation in R. Corner cases are examples where the user might be running to the edge of where the package developer intended their package to work, and thus often where things can go wrong. Let’s see what happens when we try to […]

rquery Substitution

The rquery R package has several places where the user can ask for what they have typed in to be substituted for a name or value stored in a variable. This becomes important as many of the rquery commands capture column names from un-executed code. So knowing if something is […]

Binning Data in a Database

Roz King just wrote an interesting article on binning data (a common data analytics step) in a database. They compare a case-based approach (where the bin divisions are stuffed into code) with a join based approach. They share code and timings. Best of all: rquery gets some attention and turns […]

Query Generation in R

R users have been enjoying the benefits of SQL query generators for quite some time, most notably using the dbplyr package. I would like to talk about some features of our own rquery query generator, concentrating on derived result re-use.