Win Vector LLC’s Dr. Nina Zumel has had great success applying y-aware methods to machine learning problems, and working out the detailed cross-validation methods needed to make y-aware procedures safe. I thought I would try our hand at y-aware neural net or deep learning methods here.

Estimated reading time: 10 minutes

Regularization is a way of avoiding overfit by restricting the magnitude of model coefficients (or in deep learning, node weights). A simple example of regularization is the use of ridge or lasso regression to fit linear models in the presence of collinear variables or (quasi-)separation. The intuition is that smaller […]

Estimated reading time: 14 minutes

As a data scientist I have seen variations of principal component analysis and factor analysis so often blindly misapplied and abused that I have come to think of the technique as unprincipled component analysis. PCA is a good technique often used to reduce sensitivity to overfitting. But this stated design […]

Estimated reading time: 34 minutes

I know I have already written a lot about technicalities in logistic regression (see for example: How robust is logistic regression? and Newton-Raphson can compute an average). But I just ran into a simple case where R‘s glm() implementation of logistic regression seems to fail without issuing a warning message. […]

Estimated reading time: 5 minutes

One of the current best tools in the machine learning toolbox is the 1930s statistical technique called logistic regression. We explain how to add professional quality logistic regression to your analytic repertoire and describe a bit beyond that.

Estimated reading time: 24 minutes