There’s a common, yet easy to fix, mistake that I often see in machine learning and data science projects and teaching: using classification rules for classification problems. This statement is a bit of word-play which I will need to unroll a bit. However, the concrete advice is that you often […]

Estimated reading time: 6 minutes

We have a new improved version of the “how to design a cdata/data_algebra data transform” up! The original article, the Python example, and the R example have all been updated to use the new video. Please check it out!

Estimated reading time: 25 seconds

Nina Zumel and I have a two new tutorials on fluid data wrangling/shaping. They are written in a parallel structure, with the R version of the tutorial being almost identical to the Python version of the tutorial. This reflects our opinion on the “which is better for data science R […]

Estimated reading time: 1 minute

We’ve been experimenting with this for a while, and the next R vtreat package will have a back-port of the Python vtreat package sklearn pipe step interface (in addition to the standard R interface).

Estimated reading time: 2 minutes

For quite a while we have been teaching estimating variable re-encodings on the exact same data they are later naively using to train a model on, leads to an undesirable nested model bias. The vtreat package (both the R version and Python version) both incorporate a cross-frame method that allows […]

Estimated reading time: 3 minutes

I’d like to share some new timings on a grouped in-place aggregation task. A client of mine was seeing some slow performance, so I decided to time a very simple abstraction of one of the steps of their workflow.

Estimated reading time: 3 minutes

I’ve been writing a lot about a category theory interpretations of data-processing pipelines and some of the improvements we feel it is driving in both the data_algebra and in rquery/rqdatatable. I think I’ve found an even better category theory re-formulation of the package, which I will describe here.

Estimated reading time: 12 minutes

In our recent note What is new for rquery December 2019 we mentioned an ugly processing pipeline that translates into SQL of varying size/quality depending on the query generator we use. In this note we try a near-relative of that query in the data_algebra.

Estimated reading time: 2 minutes

Introduction I would like to talk about some of the design principles underlying the data_algebra package (and also in its sibling rquery package). The data_algebra package is a query generator that can act on either Pandas data frames or on SQL tables. This is discussed on the project site and […]

Estimated reading time: 31 minutes