Nina Zumel has updated our training page to describe the Python data science intensive for software engineers we have been conducting for a couple of years. This is private group training in addition to our usual R training for scientists, and consulting offerings. Please check it out.
Estimated reading time: 23 seconds
Here is a quick, simple, and important tip for doing machine learning, data science, or statistics in Python: don’t use the default cross validation settings. The default can default to a deterministic, and even ordered split, which is not in general what one wants or expects from a statistical point […]
Estimated reading time: 7 minutes
I’d like to share some new timings on a grouped in-place aggregation task. A client of mine was seeing some slow performance, so I decided to time a very simple abstraction of one of the steps of their workflow.
Estimated reading time: 3 minutes
Nina Zumel had a really great article on how to prepare a nice Keras performance plot using R. I will use this example to show some of the advantages of cdata record transform specifications.
Estimated reading time: 9 minutes
This note is a simple data wrangling example worked using both the Python data_algebra package and the R cdata package. Both of these packages make data wrangling easy through he use of coordinatized data concepts (relying heavily on Codd’s “rule of access”). The advantages of data_algebra and cdata are: The […]
Estimated reading time: 17 minutes
This article introduces the data_algebra project: a data processing tool family available in R and Python. These tools are designed to transform data either in-memory or on remote databases. In particular we will discuss the Python implementation (also called data_algebra) and its relation to the mature R implementations (rquery and […]
Estimated reading time: 25 minutes
We at Win-Vector LLC have some big news. We are finally porting a streamlined version of our R vtreat variable preparation package to Python. vtreat is a great system for preparing messy data for supervised machine learning. The new implementation is based on Pandas, and we are experimenting with pushing […]
Estimated reading time: 1 minute
What R users now call piping, popularized by Stefan Milton Bache and Hadley Wickham, is inline function application (this is notationally similar to, but distinct from the powerful interprocess communication and concurrency tool introduced to Unix by Douglas McIlroy in 1973). In object oriented languages this sort of notation for […]
Estimated reading time: 5 minutes
Trick question: is a 10,000 cell numeric data.frame big or small? In the era of “big data” 10,000 cells is minuscule. Such data could be fit on fewer than 1,000 punched cards (or less than half a box). The joking answer is: it is small when they are selling you […]
Estimated reading time: 6 minutes