Menu Home

Working with Sessionized Data 2: Variable Selection

In our previous post in this series, we introduced sessionization, or converting log data into a form that’s suitable for analysis. We looked at basic considerations, like dealing with time, choosing an appropriate dataset for training models, and choosing appropriate (and achievable) business goals. In that previous example, we sessionized […]

Added worked example to logistic regression project

We have added a worked example to the README of our experimental logistic regression code. The Logistic codebase is designed to support experimentation on variations of logistic regression including: A pure Java implementation (thus directly usable in Java server environments). A simple multinomial implementation (that allows more than two possible […]

Rudie can’t fail (if majorized)

We have been writing for a while about the convergence of Newton steps applied to a logistic regression (See: What does a generalized linear model do?, How robust is logistic regression? and Newton-Raphson can compute an average). This is all based on our principle of working examples for understanding. This […]

The Mathematician’s Dilemma

A recent run of too many articles on the same topic (exhibits: A, B and C) puts me in a position where I feel the need to explain my motivation. Which itself becomes yet another article related to the original topic. The explanation I offer is: this is the way […]

Newton-Raphson can compute an average

In our article How robust is logistic regression? we pointed out some basic yet deep limitations of the traditional full-step Newton-Raphson or Iteratively Reweighted Least Squares methods of solving logistic regression problems (such as in R‘s standard glm() implementation). In fact in the comments we exhibit a well posed data […]