Menu Home

The Shift and Balance Fallacies

Two related fallacies I see in machine learning practice are the shift and balance fallacies (for an earlier simple fallacy, please see here). They involve thinking logistic regression has a bit simpler structure that it actually does, and also thinking logistic regression is a bit less powerful than it actually […]

The Intercept Fallacy

A common mis-understanding of linear regression and logistic regression is that the intercept is thought to encode the unconditional mean or the training data prevalence. This is easily seen to not be the case. Consider the following example in R. library(wrapr) We set up our example data. # build our […]

Why not Square Error for Classification?

Win Vector LLC has been developing and delivering a lot of “statistics, machine learning, and data science for engineers” intensives in the past few years. These are bootcamps, or workshops, designed to help software engineers become more comfortable with machine learning and artificial intelligence tools. The current thinking is: not […]

Working with Sessionized Data 2: Variable Selection

In our previous post in this series, we introduced sessionization, or converting log data into a form that’s suitable for analysis. We looked at basic considerations, like dealing with time, choosing an appropriate dataset for training models, and choosing appropriate (and achievable) business goals. In that previous example, we sessionized […]