I would like to share what I have found to be a very effective personal Jupyter workflow for data science development. DALL-E “An Effective Personal Jupyter Data Science Workflow” Jupyter (nee IPython) workbooks are JSON documents that allow a data scientist to mix: code, markdown, results, images, and graphs. They […]
Estimated reading time: 10 minutes
One of the great conveniences of performing a data science style analysis using Jupyter is that Jupyter notebooks are literate containers that combine code, text, results, and graphs. This is also one of the pain points in working with Jupyter notebooks with partners or with source control. That is: Jupyter […]
Estimated reading time: 5 minutes
In 1876 A. Légé & Co., 20 Cross Street, Hatton Gardens, London completed the first “tide calculating machine” for William Thomson (later Lord Kelvin) (ref). Thomson’s (Lord Kelvin) First Tide Predicting Machine, 1876 The results were plotted on the paper cylinders, and one literally “turned the crank” to perform the […]
Estimated reading time: 6 minutes
In most of our data science teaching (including our book Practical Data Science with R) we emphasize the deliberately easy problem of “exchangeable prediction.” We define exchangeable prediction as: given a series of observations with two distinguished classes of variables/observations denoted “x”s (denoting control variables, independent variables, experimental variables, or […]
Estimated reading time: 13 minutes