Nina Zumel recently mentioned the use of Laplace noise in “count codes” by Misha Bilenko (see here and here) as a known method to break the overfit bias that comes from using the same data to design impact codes and fit a next level model. It is a fascinating method […]
Estimated reading time: 11 minutes
Dr. Nina Zumel recently published an excellent tutorial on a modeling technique she called impact coding. It is a pragmatic machine learning technique that has helped with more than one client project. Impact coding is a bridge from Naive Bayes (where each variable’s impact is added without regard to the […]
Estimated reading time: 11 minutes
One of the shortcomings of regression (both linear and logistic) is that it doesn’t handle categorical variables with a very large number of possible values (for example, postal codes). You can get around this, of course, by going to another modeling technique, such as Naive Bayes; however, you lose some […]
Estimated reading time: 13 minutes