One of the attractive aspects of logistic regression models (and linear models in general) is their compactness: the size of the model grows in the number of coefficients, not in the size of the training data. With R, though, glm models are not so concise; we noticed this to our […]

Estimated reading time: 15 minutes

I often need to build a predictive model that estimates rates. The example of our age is: ad click through rates (how often a viewer clicks on an ad estimated as a function of the features of the ad and the viewer). Another timely example is estimating default rates of […]

Estimated reading time: 9 minutes

I know I have already written a lot about technicalities in logistic regression (see for example: How robust is logistic regression? and Newton-Raphson can compute an average). But I just ran into a simple case where R‘s glm() implementation of logistic regression seems to fail without issuing a warning message. […]

Estimated reading time: 5 minutes

Logistic Regression is a popular and effective technique for modeling categorical outcomes as a function of both continuous and categorical variables. The question is: how robust is it? Or: how robust are the common implementations? (note: we are using robust in a more standard English sense of performs well for […]

Estimated reading time: 13 minutes

What does a generalized linear model do? R supplies a modeling function called glm() that fits generalized linear models (abbreviated as GLMs). A natural question is what does it do and what problem is it solving for you? We work some examples and place generalized linear models in context with […]

Estimated reading time: 12 minutes