We have already written quite a few times about our vtreat open source variable treatment package for R (which implements effects/impact coding, missing value replacement, and novel value replacement; among other important data preparation steps), but we thought we would take some time to describe some of the principles behind […]
Estimated reading time: 6 minutes
We have been recently working on and presenting on nested modeling issues. These are situations where the output of one trained machine learning model is part of the input of a later model or procedure. I am now of the opinion that correct treatment of nested models is one of […]
Estimated reading time: 11 minutes
I have been working through (with some honest appreciation) a recent article comparing many classifiers on many data sets: “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?” Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim; 15(Oct):3133−3181, 2014 (which we will call “the DWN paper” in this […]
Estimated reading time: 19 minutes
When you apply machine learning algorithms on a regular basis, on a wide variety of data sets, you find that certain data issues come up again and again: Missing values (NA or blanks) Problematic numerical values (Inf, NaN, sentinel values like 999999999 or -1) Valid categorical levels that don’t appear […]
Estimated reading time: 34 minutes