A fair complaint when seeing yet another “data science” article is to say: “this is just medical statistics” or “this is already part of bioinformatics.” We certainly label many articles as “data science” on this blog. Probably the complaint is slightly cleaner if phrased as “this is already known statistics.” […]
Estimated reading time: 12 minutes
Given the range of wants, diverse data sources, required innovation and methods it often feels like data science projects are immune to planning, scoping and tracking. Without a system to break a data science project into smaller observable components you greatly increase your risk of failure. As a followup to […]
Estimated reading time: 10 minutes
When people ask me what it means to be a data scientist, I used to answer, “it means you don’t have to hold my hand.” By which I meant that as a data scientist (a consulting data scientist), I can handle the data collection, the data cleaning and wrangling, the […]
Estimated reading time: 6 minutes
How is it even possible to set expectations and launch data science projects? Data science projects vary from “executive dashboards” through “automate what my analysts are already doing well” to “here is some data, we would like some magic.” That is you may be called to produce visualizations, analytics, data […]
Estimated reading time: 19 minutes