## Using the data algebra for Statistics and Data Science

I have a new intermediate introduction on the data algebra up here: Using the data algebra for Statistics and Data Science. The data algebra is a tool for data processing in Python which is implemented on top of any of Pandas, Google BigQuery, PostgreSQL, MySQL, Spark, and SQLite. It allows […]

## Using WITH For Neater SQL

I’d like to work an example of using SQL WITH Common Table Expressions to produce more legible SQL.

## data_algebra 0.7.0 What is New

I’ve been tinkering a lot recently with the data_algebra, and just released version 0.7.0 to PyPi. In this note I’ll touch on what the data algebra is, what the new features are, and my plans going forward.

## Plotting Multiple Curves in Python

I have up what I think is a really neat tutorial on how to plot multiple curves on a graph in Python, using seaborn and data_algebra. It is great way to show some data shaping theory convenience functions we have developed. Please check it out.

## New improved cdata instructional video

We have a new improved version of the “how to design a cdata/data_algebra data transform” up! The original article, the Python example, and the R example have all been updated to use the new video. Please check it out!

## New Timings for a Grouped In-Place Aggregation Task

I’d like to share some new timings on a grouped in-place aggregation task. A client of mine was seeing some slow performance, so I decided to time a very simple abstraction of one of the steps of their workflow.

## Better SQL Generation via the data_algebra

In our recent note What is new for rquery December 2019 we mentioned an ugly processing pipeline that translates into SQL of varying size/quality depending on the query generator we use. In this note we try a near-relative of that query in the data_algebra.