I have a new intermediate introduction on the data algebra up here: Using the data algebra for Statistics and Data Science. The data algebra is a tool for data processing in Python which is implemented on top of any of Pandas, Google BigQuery, PostgreSQL, MySQL, Spark, and SQLite. It allows […]
Estimated reading time: 37 seconds
I’ve been tinkering a lot recently with the data_algebra, and just released version 0.7.0 to PyPi. In this note I’ll touch on what the data algebra is, what the new features are, and my plans going forward.
Estimated reading time: 10 minutes
I have up what I think is a really neat tutorial on how to plot multiple curves on a graph in Python, using seaborn and data_algebra. It is great way to show some data shaping theory convenience functions we have developed. Please check it out.
Estimated reading time: 23 seconds
We have a new improved version of the “how to design a cdata/data_algebra data transform” up! The original article, the Python example, and the R example have all been updated to use the new video. Please check it out!
Estimated reading time: 25 seconds
I’d like to share some new timings on a grouped in-place aggregation task. A client of mine was seeing some slow performance, so I decided to time a very simple abstraction of one of the steps of their workflow.
Estimated reading time: 3 minutes
In our recent note What is new for rquery December 2019 we mentioned an ugly processing pipeline that translates into SQL of varying size/quality depending on the query generator we use. In this note we try a near-relative of that query in the data_algebra.
Estimated reading time: 2 minutes