Students have asked me if it is better to use the same cross-validation plan in each step of an analysis or to use different ones. Our answer is: unless you are coordinating the many plans in some way (such as 2-way independence or some sort of combinatorial design) it is […]

Estimated reading time: 54 seconds

We have a new Win Vector data science article to share: Cross-Methods are a Leak/Variance Trade-Off John Mount (Win Vector LLC), Nina Zumel (Win Vector LLC) March 10, 2020 We work some exciting examples of when cross-methods (cross validation, and also cross-frames) work, and when they do not work. Abstract […]

Estimated reading time: 1 minute

Here is a quick, simple, and important tip for doing machine learning, data science, or statistics in Python: don’t use the default cross validation settings. The default can default to a deterministic, and even ordered split, which is not in general what one wants or expects from a statistical point […]

Estimated reading time: 7 minutes

Video of our PyData Los Angeles 2019 talk Preparing Messy Real World Data for Supervised Machine Learning is now available. In this talk describe how to use vtreat, a package available in R and in Python, to correctly re-code real world data for supervised machine learning tasks. Please check it […]

Estimated reading time: 32 seconds

Regularization is a way of avoiding overfit by restricting the magnitude of model coefficients (or in deep learning, node weights). A simple example of regularization is the use of ridge or lasso regression to fit linear models in the presence of collinear variables or (quasi-)separation. The intuition is that smaller […]

Estimated reading time: 14 minutes

Reusable modeling pipelines are a practical idea that gets re-developed many times in many contexts. wrapr supplies a particularly powerful pipeline notation, and a pipe-stage re-use system (notes here). We will demonstrate this with the vtreat data preparation system.

Estimated reading time: 18 minutes

[Reader’s Note. Some of our articles are applied and some of our articles are more theoretical. The following article is more theoretical, and requires fairly formal notation to even work through. However, it should be of interest as it touches on some of the fine points of cross-validation that are […]

Estimated reading time: 3 minutes

Nina Zumel recently mentioned the use of Laplace noise in “count codes” by Misha Bilenko (see here and here) as a known method to break the overfit bias that comes from using the same data to design impact codes and fit a next level model. It is a fascinating method […]

Estimated reading time: 11 minutes

vtreat cross frames John Mount, Nina Zumel 2016-05-05 As a follow on to “On Nested Models” we work R examples demonstrating “cross validated training frames” (or “cross frames”) in vtreat.

Estimated reading time: 17 minutes

We have been recently working on and presenting on nested modeling issues. These are situations where the output of one trained machine learning model is part of the input of a later model or procedure. I am now of the opinion that correct treatment of nested models is one of […]

Estimated reading time: 11 minutes