I recently came across the thoughtful article “On Moving from Statistics to Machine Learning, the Final Stage of Grief”. It makes some good points, and is worth the read. However, it also reminded me of the unexamined claim “data science is statistics done wrong.” Frankly this is not the case, […]

Estimated reading time: 4 minutes

Chapter 8 “Advanced Data Preparation” of Practical Data Science with R is a study in: Using the R vtreat package for advanced data preparation. Cross-validated data preparation. It is the professionally edited, ready to cite version of an important data preparation methodology. An advantage being: a number of well documented […]

Estimated reading time: 59 seconds

One of the chapters that we are especially proud of in Practical Data Science with R is Chapter 7, “Linear and Logistic Regression.” We worked really hard to explain the fundamental principles behind both methods in a clear and easy-to-understand form, and to document diagnostics returned by the R implementations […]

Estimated reading time: 52 seconds

We have an exciting new article to share: Don’t Feel Guilty About Selecting Variables. If you are at all interested in the probabilistic justification of important data science techniques, such as variable selection or pruning, this should be an informative and fun read. “Data Science” is often criticized with the […]

Estimated reading time: 1 minute

A kind reader recently shared the following comment on the Practical Data Science with R 2nd Edition live-site. Thanks for the chapter on data frames and data.tables. It has helped me overcome an obstacle freeing me from a lot of warnings telling me my data table was not a real […]

Estimated reading time: 1 minute

Data science is often a case of brining the tools to the problems and data, instead of insisting on bringing the problems and data to the tools. To support cross-language data science we have been working on cross-language tools, documentation, and training.

Estimated reading time: 1 minute

Here is a fun combinatorial puzzle. I’ve probably seen this used to teach before, but let’s try to define or work this one from memory. I would love to hear more solutions/analyses of this problem. Suppose you have n kettles of soup labeled 0 through n-1. For our problem we […]

Estimated reading time: 14 minutes

Win Vector LLC’s Dr. Nina Zumel has had great success applying y-aware methods to machine learning problems, and working out the detailed cross-validation methods needed to make y-aware procedures safe. I thought I would try our hand at y-aware neural net or deep learning methods here.

Estimated reading time: 10 minutes

R is a powerful data science language because, like Matlab, numpy, and Pandas, it exposes vectorized operations. That is, a user can perform operations on hundreds (or even billions) of cells by merely specifying the operation on the column or vector of values. Of course, sometimes it takes a while […]

Estimated reading time: 3 minutes