## Exploring the XI Correlation Coefficient

Nina Zumel Recently, we’ve been reading about a new correlation coefficient, $$\xi$$ (“xi”), which was introduced by Professor Sourav Chatterjee in his paper, “A New Coefficient of Correlation”. The $$\xi$$ coefficient has the following properties: If $$y$$ is a function of $$x$$, then $$\xi$$ goes to 1 asymptotically as $$n$$ […]

## Machine Learning Data Preparation in the Database with vtreat

Machine learning “in the database” (including systems such as Spark) is an increasingly popular topic. And where there is machine learning, there is a need for data preparation. Many machine learning algorithms expect all data to be numeric without missing values. vtreat is a package (available for Python or for […]

## Composing Queries in the Data Algebra

When working with multiple data tables we often need to know how for a given set of keys, how many instances of rows each table has. I would like to use such an example in Python as yet another introduction to the data algebra (an alternative to direct Pandas or […]

## Data Algebra 0.9.0 Release

I am pleased to announce the 0.9.0 release of the data algebra. The data algebra is realization of the Codd relational algebra for data in written in terms of Python method chaining. It allows the concise clear specification of useful data transforms. Some examples can be found here. Benefits include […]

## Estimating Uncertainty of Utility Curves

Recently, we showed how to use utility estimates to pick good classifier thresholds. In that article, we used model performance on an evaluation set, combined with estimates of rewards and penalties for correct and incorrect classifications, to find a threshold that optimized model utility. In this article, we will show […]

## Squeezing the Most Utility from Your Models

In a previous article we discussed why it’s a good idea to prefer probability models to “hard” classification models, and why you should delay setting “hard” classification rules as long as possible. But decisions have to be made, and eventually you will have to set that threshold. How do you […]

## Don’t Use Classification Rules for Classification Problems

There’s a common, yet easy to fix, mistake that I often see in machine learning and data science projects and teaching: using classification rules for classification problems. This statement is a bit of word-play which I will need to unroll a bit. However, the concrete advice is that you often […]

## vtreat for KNIME!

I would like to share a video where we show how to use the vtreat data transformer in the KNIME data science platform. (and we see there is an R/vtreat KNIME example here!)

## What is Chapter 8 of Practical Data Science with R?

Chapter 8 “Advanced Data Preparation” of Practical Data Science with R is a study in: Using the R vtreat package for advanced data preparation. Cross-validated data preparation. It is the professionally edited, ready to cite version of an important data preparation methodology. An advantage being: a number of well documented […]

## Nifty Upcoming Enhancements to unpack/to

We have some really nifty upcoming enhancements to wrapr unpack/to.