I am sharing a new short data science video: Parameterized Juypter Notebooks. It is an example from the wvpy package showing how to programmatically re-run the same notebook with many different inputs. If you are doing data science in Python, this may help you with your projects. link
Estimated reading time: 24 seconds
The data algebra is a system for composing data manipulation tasks in Python. In the data algebra, operator pipelines (or even directed acyclic graphs) are the primary objects. Applying operations composes small data pipelines into larger ones. This allows the fluid specification, inspection, and sharing of data processing and data […]
Estimated reading time: 1 minute
I’ve just started experimenting with the Polars data frame library in Python. I really like the programmable API it exposes. In fact I am starting an experimental adapter from the data algebra to Polars. When this is complete one can use the data algebra to run the same data transform […]
Estimated reading time: 46 seconds
A central data science engineering problem is how to organize general data into columns for analysis. I often refer to this as denormalization, or the deliberate arranging of data so all entries of a record are in a single row in a single table. In this note I will write […]
Estimated reading time: 15 minutes
I would like to share what I have found to be a very effective personal Jupyter workflow for data science development. DALL-E “An Effective Personal Jupyter Data Science Workflow” Jupyter (nee IPython) workbooks are JSON documents that allow a data scientist to mix: code, markdown, results, images, and graphs. They […]
Estimated reading time: 10 minutes
One of the great conveniences of performing a data science style analysis using Jupyter is that Jupyter notebooks are literate containers that combine code, text, results, and graphs. This is also one of the pain points in working with Jupyter notebooks with partners or with source control. That is: Jupyter […]
Estimated reading time: 5 minutes
Nina Zumel Recently, we’ve been reading about a new correlation coefficient, \(\xi\) (“xi”), which was introduced by Professor Sourav Chatterjee in his paper, “A New Coefficient of Correlation”. The \(\xi\) coefficient has the following properties: If \(y\) is a function of \(x\), then \(\xi\) goes to 1 asymptotically as \(n\) […]
Estimated reading time: 11 minutes
Machine learning “in the database” (including systems such as Spark) is an increasingly popular topic. And where there is machine learning, there is a need for data preparation. Many machine learning algorithms expect all data to be numeric without missing values. vtreat is a package (available for Python or for […]
Estimated reading time: 8 minutes
When working with multiple data tables we often need to know how for a given set of keys, how many instances of rows each table has. I would like to use such an example in Python as yet another introduction to the data algebra (an alternative to direct Pandas or […]
Estimated reading time: 8 minutes
I am pleased to announce the 0.9.0 release of the data algebra. The data algebra is realization of the Codd relational algebra for data in written in terms of Python method chaining. It allows the concise clear specification of useful data transforms. Some examples can be found here. Benefits include […]
Estimated reading time: 1 minute