A central data science engineering problem is how to organize general data into columns for analysis. I often refer to this as denormalization, or the deliberate arranging of data so all entries of a record are in a single row in a single table. In this note I will write […]

Estimated reading time: 15 minutes

I would like to share what I have found to be a very effective personal Jupyter workflow for data science development. DALL-E “An Effective Personal Jupyter Data Science Workflow” Jupyter (nee IPython) workbooks are JSON documents that allow a data scientist to mix: code, markdown, results, images, and graphs. They […]

Estimated reading time: 10 minutes

One of the great conveniences of performing a data science style analysis using Jupyter is that Jupyter notebooks are literate containers that combine code, text, results, and graphs. This is also one of the pain points in working with Jupyter notebooks with partners or with source control. That is: Jupyter […]

Estimated reading time: 5 minutes

Nina Zumel Recently, we’ve been reading about a new correlation coefficient, \(\xi\) (“xi”), which was introduced by Professor Sourav Chatterjee in his paper, “A New Coefficient of Correlation”. The \(\xi\) coefficient has the following properties: If \(y\) is a function of \(x\), then \(\xi\) goes to 1 asymptotically as \(n\) […]

Estimated reading time: 11 minutes

Machine learning “in the database” (including systems such as Spark) is an increasingly popular topic. And where there is machine learning, there is a need for data preparation. Many machine learning algorithms expect all data to be numeric without missing values. vtreat is a package (available for Python or for […]

Estimated reading time: 8 minutes

When working with multiple data tables we often need to know how for a given set of keys, how many instances of rows each table has. I would like to use such an example in Python as yet another introduction to the data algebra (an alternative to direct Pandas or […]

Estimated reading time: 8 minutes

I am pleased to announce the 0.9.0 release of the data algebra. The data algebra is realization of the Codd relational algebra for data in written in terms of Python method chaining. It allows the concise clear specification of useful data transforms. Some examples can be found here. Benefits include […]

Estimated reading time: 1 minute

Recently, we showed how to use utility estimates to pick good classifier thresholds. In that article, we used model performance on an evaluation set, combined with estimates of rewards and penalties for correct and incorrect classifications, to find a threshold that optimized model utility. In this article, we will show […]

Estimated reading time: 10 minutes

In a previous article we discussed why it’s a good idea to prefer probability models to “hard” classification models, and why you should delay setting “hard” classification rules as long as possible. But decisions have to be made, and eventually you will have to set that threshold. How do you […]

Estimated reading time: 13 minutes

There’s a common, yet easy to fix, mistake that I often see in machine learning and data science projects and teaching: using classification rules for classification problems. This statement is a bit of word-play which I will need to unroll a bit. However, the concrete advice is that you often […]

Estimated reading time: 6 minutes