Menu Home

How Much Data Do You Need?

Introduction A common question in analytics, statistics, and data science projects is: how much data do you need? This question actually has very specific and clear answers! A first good answer is “it is good to have a lot.” Let’s dig deeper and get some additional more detailed quantitative answers. […]

Thinking About Linear Regression

Introduction I want to spend some time thinking out loud about linear regression. As a data science consultant and teacher I spend a lot of time using linear regression and teaching linear regression. I have found each of these pursuits can degenerate into mere doctrine or instructions. “do this,” “expect […]

Data Algebra over Polars Ready for Production Use

The data algebra is a system for composing data manipulation tasks in Python. In the data algebra, operator pipelines (or even directed acyclic graphs) are the primary objects. Applying operations composes small data pipelines into larger ones. This allows the fluid specification, inspection, and sharing of data processing and data […]

Data Science: Street Fighting Statistics

I am excited to share my guest lecture for Department of Statistics at the University of Illinois STAT 447: Data Science Programming Methods. And thank you to Dirk Eddelbuettel for inviting me! The talk was titled “Data Science: Street Fighting Statistics” and demonstrates two simple supervised modeling tasks in R. […]