Menu Home

More on ROC/AUC

A bit more on the ROC/AUC

The issue

The receiver operating characteristic curve (or ROC) is one of the standard methods to evaluate a scoring system. Nina Zumel has described its application, but I would like to call out some additional details. In my opinion while the ROC is a useful tool, the “area under the curve” (AUC) summary often read off it is not as intuitive and interpretable as one would hope or some writers assert.

The situation where a ROC analysis is useful is quite common. Typically it is in a machine learning situation where you are training a classifier to decide between two categories. We will call the categories “true” and “false”. Many machine learning techniques (regression, Naive Bayes, logistic regression, SVM and so on) actually produce something more useful than a single classifier. They produce a scoring function where, if the classifier is working well, higher score indicates a higher probability of an item belonging to the “true” class. To turn a scoring function into a classifier (or decision procedure) all that is needed is a cut-off score (called a threshold). All items receiving a score above the threshold are called “positive” (hopefully the predicted analogue for “true”) and all items receiving a score below the threshold are called “negative” (hopefully the predicted analogue for “false”). By picking different thresholds one can get different (though related classifiers) that represent different trade-offs between true_positive_rate (also called sensitivity) and false_positive_rate (also called fall-out, see ROC). Or (equivalently) we are only concerned with trade-offs among competing classifier performance metrics such as precision, recall and specificity. To our mind this is best graphical representation of the the family of classifiers derivable from a single scoring function is the “double hump graph.” This is either a pair of density plots (where areas are re-normalized to integrate to one) or pair of histograms (where area is proportional to number of training examples) that simultaneously show the score distribution on true and false examples. If the two distributions are somewhat separated we get a family of thresholds that yield high quality classifiers. If the two distributions are identical we have nothing.

An example of a double-hump graph (from “I don’t think that means what you think it means;” Statistics to English Translation, Part 1: Accuracy Measures) is given here:


Where f0() and f1() are defined so that


Notice the argument’s use of integrals as inverse derivatives (the fundamental theorem of calculus) which we will call “the continuous case.” Statistics often uses more sophisticated integrals (such as Lebesgue) which can deal with discrete jumps, but not all the steps of the argument hold in that case (as seen in our above corner case counter example).

In the continuous case we can interpret the first step as calculating area by integrating TPR(inverse-FPR(x)) under a change of variables x = FPR(T). The integral also has an interpretation as the expected true positive rate sampled proportional to changes in false positive rate, as we expect integral_{T=-inf,+inf} (FPR'(T)dT) = 1. In our case (where FPR(T) only changes int two places) we must have A = lambda (1/2) + (1-lambda) (1) for some lambda in [0,1] (lambda plausibly =1/2). So we do get the expected 3/4- but this is not the probability a random uniformly chosen positive example scores higher than a uniformly chosen negative example (which is “1/2” for strictly greater, and “1” for greater than or equal). However obvious tie-breaking rules would let us say the “tie-broken probability of a true item scoring higher than a false item” agrees with the area.

One might wonder why we care about discrete data with ties? The reason is this is what we will encounter in the real world, the interpretation of TPR and FPR as integrals of simple continuous (non-atomic) distributions is, while convenient, a bit unnatural. In fact the distributions we see in the real world are “atomic” (have non negligible mass at specific points), so it is a bit disingenuous to use a smooth argument style on them (basic Riemann style integrals) without checking the consequences. In fact the types of integral theories needed to work with the actual types of distributions you see from finite data (Lebesgue integrals or operator theories of distributions) are a bit more subtle (don’t always obey the fundamental theorem of calculus in that integrals are not always anti-derivatives) and for this application introduce a counting of 1/2 for ties (not an unreasonable thing, but not the stated claim!).

I myself got this wrong in criticizing “uniformity” assumptions in the early (incorrect) version of this note, when the real issue was atomic measures (measures with jumps in their cumulative distributions). But the issue remains: the re-shared statements are overly simplified to the point where they are not technically correct.

The correct discrete argument

The continuous argument can, quickly be adapted to the discrete case.

Without loss of generality assume our scores are exactly the integers 1 through k.

Define:

  • f1(i) = P[score = i | item is true ]
  • f0(i) = P[score = i | item is false ]
  • TPR(j) = sum_{i=j...k} f1(i)
  • FPR(j) = sum_{i=j...k} f0(i)

Use the trapezoid rule to compute area A:

A = Sum_{i=1...k} (1/2)(TPR(i)+TPR(i+1)) * (FPR(i)-FPR(i+1))
  = Sum_{i=1...k} ( (1/2) f1(i) + TPR(i+1) )  * f0(i)
  = Sum_{i=1...k} TPR(i+1) * f0(i) + (1/2) f1(i) * f0(i)

Which (after following the pattern of the original continuous argument a bit further) fits the rule of: 1 point every time a true example scores above a negative example, and 1/2 point when they have the same score. Not the rule stated in the references (so they also had an issue), but also not an unnatural counting rule.

Conclusion

The ROC curve is a useful tool, but you have to use it for appropriate tasks. We know when looking at it you can’t help but directly see the area (AUC). However, in our opinion, the AUC does not have as straightforward a business intuition as we would hope. Indeed, over actual data usually only a few high-quality classifiers can be built by choosing threshold (due to the score often being concentrated at a few values). This contradicts the expectation formed from the diagram that you have easy access to many classifiers with a wide range of dial-able behaviors. Without an explicit cost of error model (cost of false positives and separate cost of false negatives) you should always be suspicious of a single number summary of a classifier performance (be it accuracy, AUC, F1 or so on). We in fact prefer using both precision and recall. If you insist on a single number: the F1 is a good heuristic measure of classifier quality, as it at least incorporates our operational choice of score threshold into the quality assessment. The ROC curve is useful tool designing a classifier from a scoring function (though I prefer the “double hump graph”), but once you have chosen a threshold the performance of the other classifiers (induced by choosing different thresholds) are irrelevant to assessing the performance of the classifier you have settled on.

Categories: Opinion Statistics Tutorials

Tagged as:

jmount

Data Scientist and trainer at Win Vector LLC. One of the authors of Practical Data Science with R.

2 replies

  1. @zubin
    Thanks, I like the reference. I think the misinterpretations I criticize may be related to the page 106 Whitney-Wilcoxon example you give (which, while correct in no way sounds useful- I suspect the author didn’t like it either). And the line “yet another interpretation of AUC is the average sensitivity, regarding values of the specificity as equally likely” is pretty much my complaint (as regarding specificity as being uniformly distributed is usually not consistent with the training data).

%d bloggers like this: